The complete form of moment equations of stellar dynamics
نویسنده
چکیده
The exact mathematical expression for an arbitrary n-order stellar hydrodynamic equation is explicitly obtained depending on the central moments of the velocity distribution. In such a form the equations are physically meaningful, since they can be compared with the ordinary hydrodynamic equations of compressible, viscous fluids. The equations are deduced without any particular assumptions about symmetries, steadiness, or particular kinematic behaviours, so that they can be used in their complete form, and for any order, in future works with improved observational data. Also, in order to work with a finite number of equations and unknowns, which would provide a dynamic model for the stellar system, the n-order equation is needed to investigate in a more general way the closure conditions, which may be expressed in terms of velocity distribution statistics, as it is shown in a case example.
منابع مشابه
Enhancement of Articulated Heavy Vehicle Stability by Optimal Linear Quadratic Regulator (LQR) Controller of Roll-yaw Dynamics
Non-linear characteristic of tire forces is the main cause of vehicle lateral dynamics instability, while direct yaw moment control is an effective method to recover the vehicle stability. In this paper, an optimal linear quadratic regulator (LQR) controller for roll-yaw dynamics to articulated heavy vehicles is developed. For this purpose, the equations of motion obtained by the MATLAB sof...
متن کاملKinematics and Dynamics of two Cooperating Robots in Spatial Moving of an Object
The kinematics and dynamics of two industrial cooperating robots are presented in this paper. The NOC (natural orthogonal complement) method is used to derive the dynamical equations for the motion of two cooperating robots. The joint torques of the two robots are determined based on the optimization techniques in order to obtain unique solution for joint torques. To this end, minimizing the cr...
متن کاملKinematics and Dynamics of two Cooperating Robots in Spatial Moving of an Object
The kinematics and dynamics of two industrial cooperating robots are presented in this paper. The NOC (natural orthogonal complement) method is used to derive the dynamical equations for the motion of two cooperating robots. The joint torques of the two robots are determined based on the optimization techniques in order to obtain unique solution for joint torques. To this end, minimizing the cr...
متن کاملNonlinear Dynamics of the Rotational Slender Axially Moving String with Simply Supported Conditions
In this research, dynamic analysis of the rotational slender axially moving string is investigated. String assumed as Euler Bernoulli beam. The axial motion of the string, gyroscopic force and mass eccentricity were considered in the study. Equations of motion are derived using Hamilton’s principle, resulting in two partial differential equations for the transverse motions. The equations are ch...
متن کاملClosure of the stellar hydrodynamic equations for Gaussian and ellipsoidal velocity distributions
The closure conditions, which make a finite set of moment equations equivalent to the collisionless Boltzmann equation, are investigated for Gaussian and ellipsoidal velocity distributions working from the complete mathematical expression for the n-order stellar hydrodynamic equation, which was explicitly obtained depending on the comoving moments in a previous paper. First, for a Schwarzschild...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007